

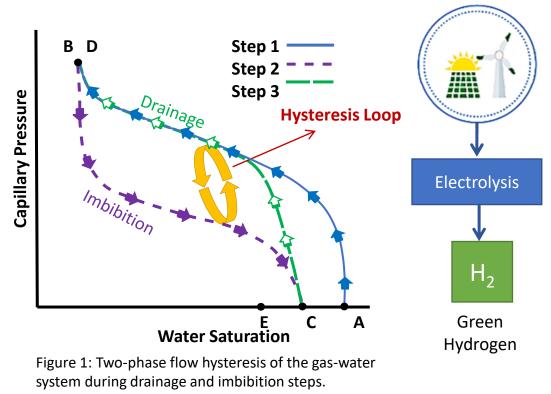

Trapping, Hysteresis and Ostwald Ripening in Hydrogen Storage

SEPIDEH GOODARZI

Supervisor: Prof. Martin Blunt Co-supervisor: Dr. Branko Bijeljic Department of Earth Science and Engineering January 2023






### **Objectives of the project**

- Fundamentals of dynamic hysteresis in multiphase flow
- A better characterization of multiphase flow properties, looking at both the effects of saturation path and flow rate.
- Potentially applicable to other situations including CO<sub>2</sub> and H<sub>2</sub> storage.
- Investigating hydrogen storage and use in different rock geometries.



#### Background

- Saturation, Interfacial area, Mean curvature and Gaussian curvature give a full characterisation of geometry.
- Capillary pressure depends on both the saturation and saturation history.
- X-ray imaging techniques enable us to use this theory by measuring these four functions.
- **UHS** can be considered as a long-term energy storage solution (inject into the surface reservoir and withdrawn).
- **Porous formations** are good places for GT storage and use.





## Two-phase hydrogen experiment

- Investigate the hysteresis of a two-phase hydrogenbrine system at unsteady-state conditions.
- Meso-scale, 12 mm diameter core and repeated H<sub>2</sub> and brine injection.
- Lab-based micro-CT, using a Zeiss Versa XRM-500 X-ray microscope.

| ble 1: Capillary number for unsteady state H2-Brine experiment, $Ca_{ij}=rac{\mu_i q_i}{\sigma_{ii}}$ |           |           |                  |  |
|--------------------------------------------------------------------------------------------------------|-----------|-----------|------------------|--|
| Flooding Step                                                                                          | $Ca_{wg}$ | $Ca_{gw}$ | Flowrate(ml/min) |  |
| Water                                                                                                  | 5.8E-09   | -         | 0.06             |  |
| Gas                                                                                                    | -         | 1.9E-07   | 2.00             |  |
| Gas                                                                                                    | -         | 3.9E-08   | 0.40             |  |
| Gas                                                                                                    | -         | 7.7E-09   | 0.08             |  |

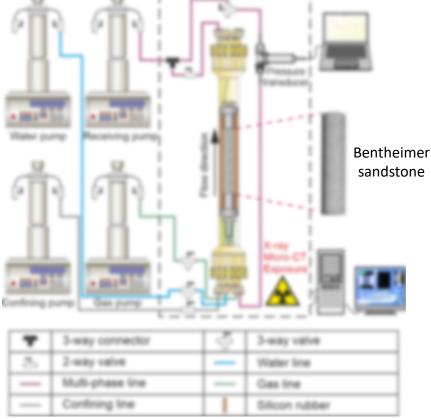
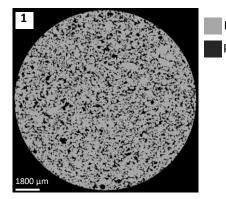




Figure 2: Schematic diagram for the two-phase gas-water experiment.

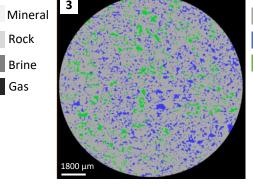


## Dry, normalised and segmented images

- Using Non-Local Means filter with Watershed segmentation technique.
- Image resolution is 5.86 µm.







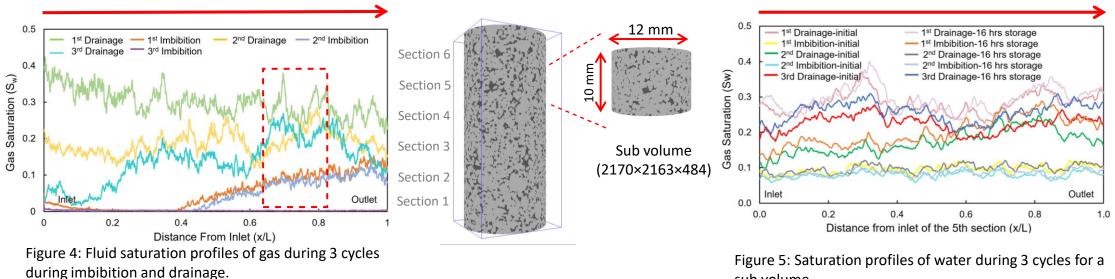


Figure 3: Dry(1), normalised(2) and segmented(3) two-dimensional slices of three-dimensional images of the Hydrogen-brine experiment.

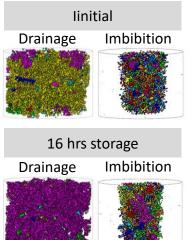
Table 2: Procedure of the sample scanning.

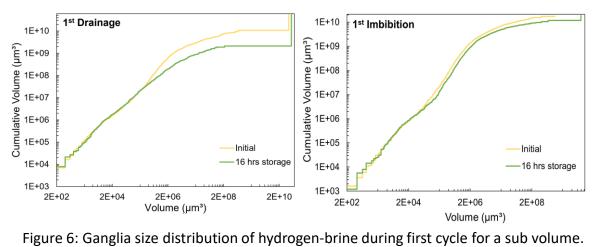
|                      | Scan             | Steps                      | Section |
|----------------------|------------------|----------------------------|---------|
|                      | 1 <sup>st</sup>  | Dry scan                   | 1-6     |
|                      | 2 <sup>nd</sup>  | Fully saturated            | 1-6     |
|                      | 3 <sup>rd</sup>  | 1 <sup>st</sup> Drainage   | 1-6     |
|                      | 4 <sup>th</sup>  | after16hrs                 | 2,5     |
| Rock<br>Brine<br>Gas | 5 <sup>th</sup>  | 1 <sup>st</sup> Imbibition | 1-6     |
|                      | 6 <sup>th</sup>  | after16hrs                 | 2,5     |
|                      | 7 <sup>th</sup>  | 2 <sup>nd</sup> Drainage   | 1-6     |
|                      | 8 <sup>th</sup>  | after16hrs                 | 2,5     |
|                      | 9 <sup>th</sup>  | 2 <sup>nd</sup> Imbibition | 1-6     |
|                      | 10 <sup>th</sup> | after16hrs                 | 2,5     |
|                      | 11 <sup>th</sup> | 3 <sup>rd</sup> Drainage   | 1-6     |
|                      | 12 <sup>th</sup> | after16hrs                 | 2,5     |
|                      | 13 <sup>th</sup> | 3 <sup>rd</sup> Imbibition | 1-6     |
|                      | 14 <sup>th</sup> | after16hrs                 | 2,5     |
|                      | 15 <sup>th</sup> | after 1day                 | 1-6     |



#### Imaging of gas saturation for all cycles




sub volume.


- Hydrogen is dissolved near the inlet when brine is injected.
- Gas saturation can increase after 16 hrs in the volume studied: . gas may rise upwards from lower in the sample.
- Drainage (gas injection) leads to an increase in gas saturation.
- Not much change after water flooding. •

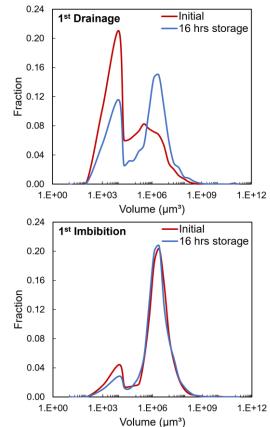


#### Analysis of discrete ganglia Ganglion size distribution (cycle 1)

- Rearrangement and tendency for some of the smaller bubbles to disappear and add to the larger bubbles but not necessary completely in a connected ganglion
- After imbibition one big ganglia begins to dominate the volume, which makes the withdrawal of hydrogen through a connected pathway possible.








0.24 1<sup>st</sup> Dra

0

12 mm

Section 5





12 mm

Section 5

шШ

2

## Analysis of discrete ganglia Ganglion size distribution (cycle 2 & 3)

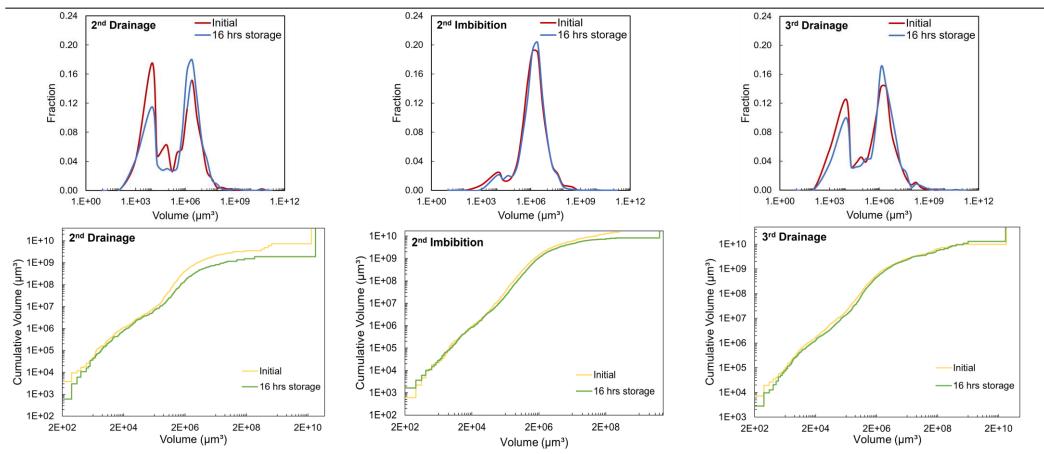
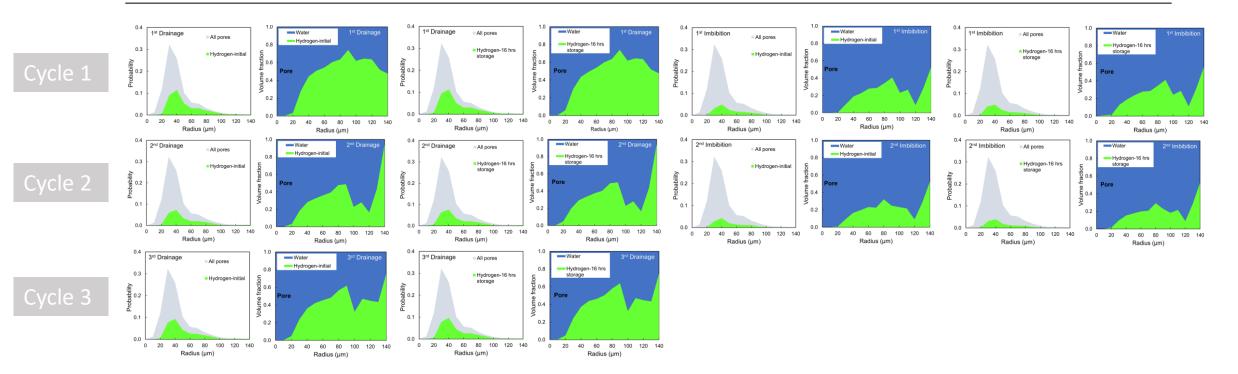
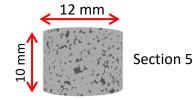




Figure 7: Ganglia size distribution of hydrogen-brine during second and third cycles for a sub volume.






#### Pore occupancy maps



As expected, gas (shown in green) tends to reside in the larger pores. Both the actual distribution and occupied fractions are shown.





#### Throat occupancy maps

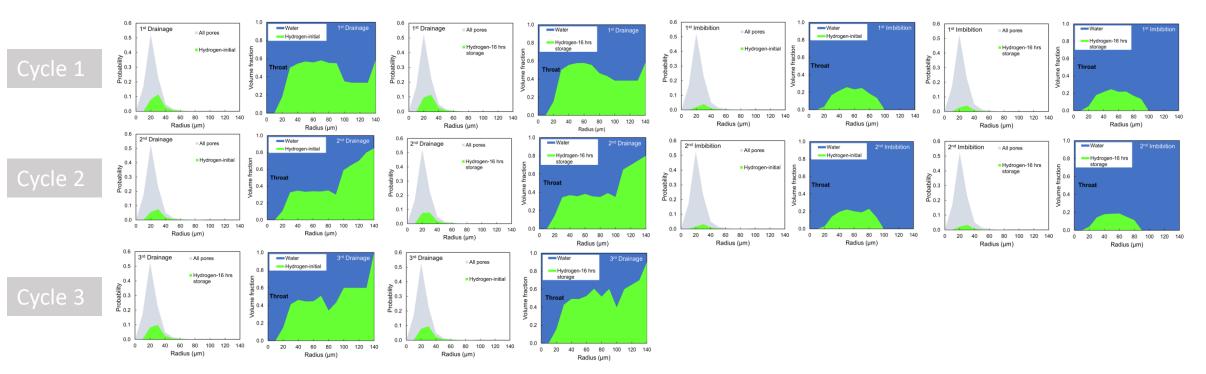
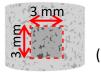




Figure 8: Histogram of the distribution of gas-filled pore elements at different stages of gas injection and the throat occupancy of the volume fraction at different radii.



# Measurement of interfacial area & capillary pressure analysis



Section 5 Sub volume (500×500×500)

- Can't rely too much on pressure because of uncertainty in the measurement.
- Capillary pressure after drainage is slightly higher than after imbibition.
- No clear trend between initial and after waiting 16hrs, can go up or down.

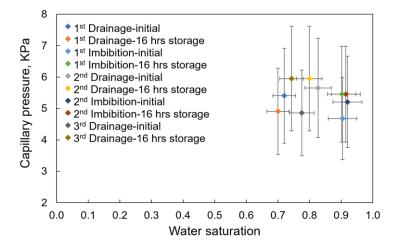



Fig 9: Capillary pressure measurements of each two phases for initial and after 16hrs.

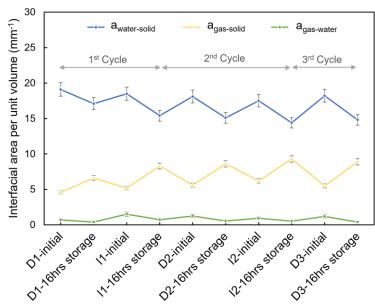



Figure 10: Interfacial area measurements of each two phases for initial and after 16hrs for 3 cycles



## Improvement of the experiment protocol

- Porous plate to allow a higher initial hydrogen saturation.
- Using imposed pressures to determine capillary pressure in drainage.
- Pre-equilibrated brine to reduce the effect of dissolution.
- Higher pressure, 10 MPa, to better represent reservoir conditions.

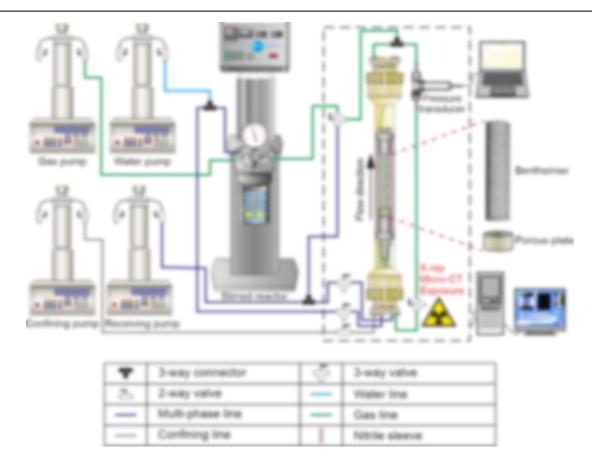



Figure 11: Schematic diagram for the two-phase gas-water experiment.



### Did the experiment work?

- High Initial gas saturation after hydrogen injection
- Uniform gas saturation after injection and withdrawal

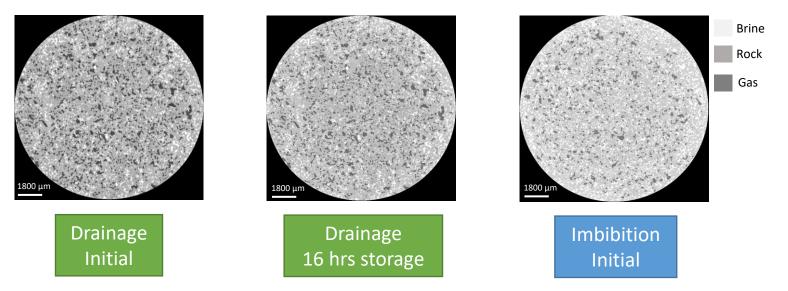



Figure 12: Dry two-dimensional slices of three-dimensional images of the Hydrogen-brine experiment.

#### Conclusions

- Studying hysteresis during hydrogen injection is the main purpose of my work.
- The relationship between saturation, area, curvature and Gaussian curvature will be measured.
- Drainage and imbibition processes in 3 cycles for a hydrogen-brine system at the unsteady state condition have been investigated.
- The gas saturation was between 30% and 40% after each gas injection near the top of the sample
- Dissolving gas in brine changes the gas saturation along the sample.
- We saw the effect of Ostwald ripening: some of the smaller bubbles disappear and are rearranged to the larger bubbles but are not necessary in a connected ganglion.

#### **Future work**

- I have looked at the carbonate sample for which I have performed a similar suite of experiments, and I am still analysing the results.
- Finishing the result analysis of Hydrogen-Brine experiment (porous plate).
- Preparing the procedure for a new set of experiment, different types of rock.
- How can we extend the experimental protocol to measure capillary pressure and relative permeability for a range of saturations, after allowing pore-scale equilibrium (Ostwald ripening)?



#### Acknowledgements

#### • Funding:

Shell (Digital Rocks Phase2)

#### • Supervisors:

Prof. Martin J Blunt and Dr. Branko Bijeljic

#### • Lab B109:

Dr. Edward Bailey, Dr. Vinchenzo Cunsolo, Dr. Yihuai Zhang and, Dr. Guanglei Zhang, Dr. Sajjad Foroughi



# Thank you